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Abstract 
Effective treatment decisions for colorectal cancer 

(CRC) depend on the histological classification and 

microsatellite instability (MSI) status of the patient’s 

biopsy. In recent years, artificial intelligence (AI) has 

emerged as a valuable tool in the diagnostic process, 

offering efficiency, reducing the need for extensive 

manpower and maintaining accuracy. This review 

explores recent advancements in AI technology and its 

effectiveness in identifying prognostic biomarkers 

related to CRC and aims to inform clinicians and 

gastroenterologists about novel patient management 

strategies. A narrative non-systematic review of 

existing literature on using AI for detecting deficient 

mismatch repair (dMMR)/MSI in CRC diagnosis was 

performed. Searches were conducted in the PubMed 

database using a combination of keywords such as 

colorectal cancer diagnosis, artificial intelligence and 

deep learning, focusing on publications from 2019 

onward.  

 

The reviewed articles exhibited varying outcomes, with 

each utilizing the CNN model under differing 

conditions like cohort types and sizes and convolution 

or filter numbers, highlighting specific strengths and 

limitations for each model. AI-driven predictive 

analytics offered researchers superior insights into 

genomics and proteomics data, elevating patient 

characterization precision and streamlining pathology 

workflows. 
 

Keywords: Convolutional neural networks, cancer 

pathology, machine learning, predictive value of tests, DNA 

mismatch repair. 

 

Introduction 
Through a journey that may last for years, patients and their 

families will have to deal with the inevitable emotional pain 

and financial strains associated with cancer. Colorectal 

cancer (CRC), which includes both colon and rectal cancer, 

is identified worldwide as the third most common type of 

cancer and the second most cancer-related death with 

approximately 1.93 million new cases reported in 202211. 
The incidence of colon cancer is relatively similar between 

genders for the 40–59 age categories but the incidence 

increases slightly in males aged 60 and above11. Although 

rectal cancer exhibits a higher prevalence among males, 

right-sided colon cancer, a more aggressive form of colon 

cancer, has a greater incidence in females1. Globally, the 

incidence of CRC is highest in the regions of Australia/New 

Zealand and Europe, with a rate of 40.6 per 100,000 and a 

mortality rate of 20.2 per 100,000 for males54.  

 

Conversely, the lowest incidence rates of the same disease 

are observed in various African regions and Southern Asia, 

where the rate is 4.4 per 100,000 with a mortality rate of 2.5 

per 100,000 females54. The differences in the global rates of 

CRC reflect the multifaceted impact of various influences 

such as country's Human Development Index levels (HDI) 

and genetic factors. Prediction models by the same study 

anticipated that by 2040, there will be 3.2 million new cases 

and 1.6 million fatalities due to CRC, with the majority 

occurring in Nations with high HDI. CRC not only 

detrimentally affects the quality of life of those diagnosed 

but also incurs substantial economic burdens. These include 

expenses associated with early disease stages such as 

screening, diagnosis, imaging and surgical interventions, as 

well as expenses related to later stages of the disease (e.g. 

hospitalization, medication and durable medical equipment).  

 

The estimated global economic cost of CRC is $2.8 trillion 

internationally, accounting for 10.9% of the global economic 

cost of cancer15. Hence, promoting screening programs 

designed for early colon cancer detection is crucial to reduce 

the financial burden associated with therapeutic 

interventions and to enhance the efficacy of treatment 

modalities. The risk of developing colon polyps increases 

with advancing age, male gender, high-fat low-fiber diet, 

excess alcohol intake, tobacco use and family history of 

colon cancer33. In addition, patients with Crohn’s disease 

and long-standing ulcerative colitis have an increased risk of 

developing CRC78. Such risk factors often lead to the silent 

development of the disease, leading to nearly half of the 

patients aged 45-50 years being diagnosed at an advanced 

stage of the disease—stage III or IV, a point at which the 

prognosis becomes less favorable67,79.  

 

Microsatellite instability (MSI) and DNA mismatch repair 

(MMR) are critical factors in the diagnosis and treatment of 

colon cancer. MSI is a condition referring to the buildup of 

insertion or deletion mutations at microsatellite repeat 

sequences within cancer cells, caused by a functional failure 
in one or more key DNA MMR proteins which are crucial 

for correcting DNA replication errors. Identifying MSI 

status can help to predict prognosis and response to certain 
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therapies such as immunotherapy31,84. Moreover, MMR 

deficiency, often associated with Lynch syndrome, can 

guide genetic counseling and testing in affected families; 

thereby enhancing personalized treatment strategies and 

improving patient outcomes. Traditionally, hematoxylin and 

eosin (H&E) staining of tissue biopsies or molecular 

methods is utilized for determining the dMMR/MSI status.  

 

However, these techniques are generally labor-intensive and 

costly. Consequently, there is a pressing need for the 

development of innovative and accurate methods for both 

diagnosis and prognosis. This is because these markers are 

essential for determining the most effective treatment 

options for individual CRC patients. In this regard, 

advancements have been made to refine the methodologies 

aimed at improving diagnostic and prognostic protocols by 

integrating artificial intelligence (AI) into pathology. The 

aim of this review is to outline the utility of AI in 

applications related to colon cancer diagnosis and prognosis. 

Specifically, this review concentrates on the prediction 

models developed within the preceding five years, utilizing 

data from routinely stained H and E histopathology slides to 

determine dMMR/MSI status. Additionally, limitations and 

future directions for improvement are also discussed.  

 

A narrative non-systematic review of the published literature 

on AI technology utilization for dMMR/MSI detection 

within the context of colorectal cancer diagnosis was 

conducted. This review involved searching PubMed 

databases with different combinations of keywords and 

phrases used to narrow down and to identify pertinent 

sources. These keywords included, but were not limited to, 

colorectal cancer diagnosis, artificial intelligence, deep 

learning and MSI. The review encompasses only material 

published since 2019, with non-English publications 

excluded. 

 

CRC diagnosis, treatment and prognosis 
The development of CRC usually starts with the formation 

of a neoplastic polyp invading the muscularis mucosa and 

into the submucosa. While most polyps are benign, a 

histological examination at this early stage is necessary to 

determine whether the polyp has the potential to develop into 

a malignant tumor52. If the tumor is found to be malignant, 

it can be staged based on the tumor-node-metastasis (TNM) 

histopathological criteria established by the American Joint 

Committee on Cancer (AJCC) and the Union for 

International Cancer Control (UICC)7. TNM staging relies 

on three histopathological criteria: the primary tumor size 

(T), the number of involved regional lymph nodes (N) and 

the presence of distant metastases (M)77. 

 

In addition to the endoscopic biopsy, number of diagnostic 

imaging procedures can be performed such as preoperative 

ultrasound, computed tomography scans and magnetic 

resonance imaging scans to estimate the involvement of the 

rectum wall and local lymph node metastases7,8. The TNM 

system has similar survival rates for both rectal and colon 

cancers, supporting the use of the same staging system for 

both these diseases3. The staging element “T” is crucial for 

prognosis, as research indicates that patients diagnosed with 

T4, N0 tumors exhibit lower survival rates compared to 

those with T1-2, N1-210,16,30. Similarly, the regional lymph 

node classification “N” is crucial for determining the disease 

metastasis. The AJCC and The College of American 

Pathologists (CAP) recommend the examination of a 

minimum of 12 lymph nodes22,23,74. Nonetheless, a definitive 

consensus on the minimum number of lymph nodes required 

for the accurate staging of stage II cancer is lacking and 

pathologists are encouraged to retrieve as many lymph nodes 

as possible for staging colon cancers.  

 

All newly identified cases of colon cancer must undergo 

screening for genetic mutations, along with performing a 

comprehensive colonoscopy and establishing baseline levels 

of carcinoembryonic antigen (CEA). Genetic mutation in 

MMR genes is characterized by mutations in MLH1, MSH2, 

MSH6, or PMS2 which result in DNA replication error. Such 

mutations can be identified by immunohistochemistry (IHC) 

to provide information about the expressed MMR proteins. 

Determining MSI status, an MMR byproduct, is performed 

by molecular techniques58. The high concordance rate of 

dMMR and MSI, exceeding 95%, makes them nearly 

interchangeable84.  

 

A normal IHC test implies that all four MMR proteins are 

normally expressed and is often reported as proficient MMR 

(pMMR). The absence of expression of one or more of the 

four DNA MMR proteins is often reported as positive IHC 

or deficient MMR (dMMR). In addition to blood 

biomarkers, patients diagnosed with invasive colon cancer 

necessitate an initial computed tomography (CT) scan of the 

chest and abdominopelvic regions8. 

 

To determine the optimal therapy for each patient, the 

dMMR/MSI status should be determined for all newly 

diagnosed patients to guide the disease diagnosis and to 

determine the treatment plan. Based on the most recent 

National Comprehensive Cancer Network (NCCN) 

guidelines, patients with early stages (UICC stage I) and 

stage II with MSI-H are universally accepted to be treated 

with surgery accompanied by lymph node resection. 

Similarly, low-risk stage II colon cancer patients (with MSS 

or proficient MMR (pMMR)) are also treated with surgery 

and lymph node resection and can be observed without 

adjuvant therapy, or considered for capecitabine or 5-

FU/leucovorin (LV).  

 

On the other hand, stage II patients (MSS/pMMR) at high 

risk for systemic recurrence and displaying poor prognostic 

features are considered for 6 months of adjuvant 

chemotherapy with 5-FU/LV, capecitabine, or FOLFOX, or 

3 months of CAPEOX6,17. Low-risk (T1-3, N1) patients with 
stage III of disease are recommended to have adjuvant 

treatment of CAPEOX29, or 3 to 6 months of FOLFOX 

among other treatment options25. Patients with high-risk (T4, 
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N1-2 or any T, N2) and stage III of disease, are 

recommended for 6 months of FOLFOX, or 3 to 6 months 

of CAPEOX, among other treatment options.    

  

Patients with metastatic CRC should have tumor genotying 

for RAS and BRAF mutations. This is especially important 

to determine the optimal systemic therapy7. Stage IV and 

recurrent CRC are treated by surgery, chemotherapy and 

target therapy with monoclonal antibodies targeting growth 

factors (vascular endothelial growth factor receptors 

(VEGFR) and epidermal growth factor receptors (EGFR). 

The specific order and timing of these treatments vary 

among patients and the choices of adjuvant therapies and 

management protocols have been extensively reviewed 

elsewhere and are beyond the scope of this review7,53. 

 

In general, the prognosis of CRC can be influenced by a 

number of factors, reflecting the substantial variability in the 

5-year survival rate. Key determinants include the patient’s 

age, dietary habits, timing of therapy, tumor localization, 

body mass index and comorbidities among other factors. The 

pathological stage is considered as the most significant 

prognostic indicator. The 5-year overall survival rate for 

colon cancer is estimated to be 85% for stage I, 70-80% for 

stage II, 35-65% for stage III and 5% for stage IV. These 

survival rates translate to 90% for localized tumors, 73% for 

regional tumors, 13% for distant tumors and an overall 63% 

for all cases.  

 

The risk of CRC recurrence following curative surgery is 

estimated to range between 30 and 40% with 40-50% of 

recurrences occurring within the first few years after the 

initial resection surgery28. The probability of CRC 

recurrence has been associated with number of risk factors 

including age at diagnosis, tumor location and stage and 

number of dissected lymph nodes, pre- and post-operative 

CEA serum levels and the type of the performed resection 

procedure57,65,83.  

 

Based on the insights obtained from the histological 

examination and imaging, disease management and 

prognosis can be determined. Although TNM staging has 

long been considered a universal staging system, it exhibits 

a notable variance in prognostic accuracy among patients 

with the same stage, indicating its limitation in predicting 

outcomes accurately45. In response to this limitation, a 

number of novel tools are being investigated to enhance the 

prognostic efficacy of CRC. These tools seek to optimize the 

stratification of patients by distinguishing individuals at low-

risk and high-risk of cancer recurrence. Such advancement 

holds the potential to offer valuable guidance in determining 

the most suitable treatment regimen, particularly for patients 

anticipated to derive substantial benefits. 

 

AI in pathology 
AI refers to the ability of machines to carry out tasks in a 

way that mimics human intelligence in terms of problem-

solving and pattern recognition among many other tasks. In 

the field of pathology, AI can analyze histopathological 

images and differentiate cancerous cells from non-cancerous 

ones31. Unlike static rule-based systems, AI algorithms can 

modify their outputs based on new data or feedback, making 

them more flexible and adaptable. Machine learning models 

can analyze large datasets, including patient history, genetic 

information and treatment outcomes, to forecast the likely 

trajectory of the disease62. This enables oncologists to tailor 

personalized treatment plans for each patient, optimizing the 

chances of recovery and enhancing the quality of care31. This 

process reduces the likelihood of human error and improves 

diagnostic precision, enabling early detection and better 

patient outcomes.  

 

AI encompasses a variety of subfields, each contributing 

distinct methodologies and clinical applications to the field 

of pathology. Machine learning (ML) refers to the ability of 

a system to use algorithms to learn from the provided data 

and subsequently make predictions or solve problems based 

on this data37. In CRC pathology, ML can be used to analyze 

large datasets of histopathological images to identify 

patterns correlated with cancerous tissue, thus enhancing 

diagnostic accuracy31. Deep Learning (DL), is a branch of 

ML that uses layers of neural networks and multiple layers 

to process raw data without manual feature extraction70. For 

instance, images paired with corresponding class labels (e.g. 

H&E stained images with benign or malignant cells) are 

introduced to the system as the training set and upon the 

introduction of new input data, the system can distinguish 

and classify the images even without any pre-existing 

assumptions.  

 

Neural networks (NNs) refer to layers of nodes: an input 

layer, one or more hidden layers and an output layer. Each 

node functions as an artificial neuron connected to the next 

node and each has a specific weight and threshold value. A 

node activates and transmits data to the following layer if its 

output surpasses the threshold value; otherwise, it does not 

pass any data37. NNs are trained using data to enhance their 

accuracy over time and the weights are adjusted during the 

learning process to minimize error and improve the model’s 

accuracy. NNs are effective in processing data, recognizing 

patterns and predictions. Once the algorithms are fine-tuned, 

these networks become important tools by enabling rapid 

classification and clustering of data.  

 

Deep Neural Networks (DNNs) features utilize multiple 

layers of nodes that are densely interconnected, which 

facilitates global feature learning. The term "deep" in deep 

learning signifies the number of layers within a neural 

network. When a neural network consists of more than three 

layers, including input and output layers, it qualifies as a 

deep learning algorithm37. DNNs are commonly used across 

a range of machine-learning tasks71. Convolutional Neural 
Networks (CNNs) use mathematical operations known as 

convolution in one or more of their layers. The concept of 

CNN architecture is illustrated in figure 1.   
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Figure 1: An overview of convolutional neural networks (CNNs) process in digital pathology. A) The training dataset 

is used for learning and to fit the initial parameters of the classifier. The validation dataset is used to adjust the 

parameters of the classifier. The test dataset consists of held-out data that provides an unbiased evaluation of the 

final prediction model. B) H and E scanned images are derived from the original tissue blocks. The feature extraction 

process utilizes a convolutional neural network (CNN), which is an intricate network of interconnected processes 

organized in layers, tasked with extracting higher-level features from the images. Pooling layers summarize the 

features extracted by convolution layers and reduce the dimensions of the images. Following a series of convolution 

and pooling layers, the classification layer predicts the output by depicting AUC-ROC value. 
 

However, unlike CNNs, DNNs do not have specialized 

layers for capturing spatial hierarchies, making them more 

versatile but potentially less efficient for tasks specifically 

related to images61. The ability of CNNs to automatically 

identify features from images makes them well-suited for 

image classification in the field of pathology especially 

when the original WSI cannot be used for AI and requires 

processing prior analysis61. 

 

In CNN, the convolution process involves the addition of a 

filter over the input data to produce a feature map, capturing 

spatial hierarchies in the data62. CNNs are structured into 

two primary components: the feature extraction layer and the 

classification layer, each serving distinct purposes. The 

feature extraction layer integrates convolution and pooling 

layers. The convolution layer generates newly modified 

versions of images by applying various types of filters, such 

as th identifying edges and enhancing contrast. The pooling 

layer condenses the features of images produced by the 

convolution layer62. Repeating the preceding process 

enables the segregation of significant attributes from the 

input data56. Following a series of multiple cycles of 

convolution and pooling, the classification layer utilizes the 

extracted features to classify the input data into predefined 

categories, thereby forming the network’s prediction. The 

predicted result is then compared against a reference 

standard provided in the data31. If discrepancies are 

identified, the filters are adjusted to enhance prediction 

accuracy31. This makes CNNs highly efficient for tasks 

involving image recognition and video analysis.  

  

Inception-V3, ResNET, ShuffleNet, MSInet, MIL, WisMSI 

and MSIntuit are among the CNN architectures widely used 

for image classification tasks, each providing their unique 

advantages2,26,38,82. For instance, Inception-V3 is most 

suitable for high-performance settings due to its depth and 

accuracy50, while ShuffleNET is superior in efficiency and 

speed60. MSInet is specialized in multi-scale feature 

extraction and is mostly used in clinical oncology imaging80. 

By operating these AI techniques, the field of pathology is 

advancing toward more accurate and efficient diagnostic 

protocols.  
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To maximize the performance of deep learning models, 

selecting large and diverse training and validation data sets 

is crucial62. The training dataset consists of a set of 

pathology images that the AI model uses to learn and 

identify patterns associated with different pathological 

conditions. Through this process, the model adjusts its 

algorithms to improve accuracy and performance. The 

validation dataset is used to evaluate the model's 

performance and to ensure that the results are not confined 

to the initial training dataset, thereby confirming its 

generalizability63. Finally, the testing dataset includes held-

out data to evaluate how well the model performs in real-

world scenarios outside the training data. This approach 

helps in fine-tuning the model, preventing overfitting and 

ensuring that it can accurately interpret new and unseen 

pathology slides55. 

 

The evaluation of these models is based on their Area Under 

the Receiver Operating Characteristic curve (AU-ROC, or 

AUC) values, which serve as an essential metric in assessing 

the performance of CNNs. The AUC quantitatively 

measures the model's capacity to differentiate between 

classes, thereby offering a comprehensive indication of its 

classification accuracy. The plot represents the relationship 

between the true positive rate and the false positive rate 

across various classification thresholds. A high AUC (close 

to 1) indicates that the model is effective in distinguishing 

between the two classes and its predictions are reliable.  

 

Conversely, a low AUC (close to 0) suggests poor 

performance. An AUC around 0.5 implies that the model is 

essentially making random guesses, demonstrating no ability 

to separate the classes and indicating that the model is not 

learning any meaningful patterns from the data12,32. The 

scientific community continues to eagerly compete in the 

development of models that achieve improved AUC values, 

thereby advancing the ability to accurately determine 

MSI/dMMR status in clinical practice. 

 

Predicting dMMR/MSI status by Deep Learning 

approaches 
Immune checkpoint inhibitors (ICI) have been regarded as a 

successful treatment strategy for various solid tumors. ICI 

acts by counteracting tumor-mediated immune suppression, 

creating a proinflammatory microenvironment that can 

facilitate the destruction of cancer cells. Among the first 

FDA-approved ICI therapeutics were nivolumab (anti-

PD1)75, atezolizumab (anti-PDL1) and ipilimumab (anti-

CTLA-4)4,47. These approvals were due to the observation 

that tumors with high levels of MSI (MSI-H), regardless of 

their site, are resistant to chemotherapy and sensitive to 

ICI8,45,48. Despite the NCCN recommendation for 

dMMR/MSI screening, not all patients can have the test18,73.  

 

This limitation arises from the restricted availability of these 

tests mostly in tertiary hospitals and their high cost18,41. The 

fact that only a small percentage of CRC patients (~15%) 

have MSI-H, AI technology enables the prediction of 

therapeutic efficacy by forecasting patient responses to 

treatment49,81. This predictive capability can mitigate the risk 

of patients experiencing toxicity without therapeutic benefit. 

In the past few years, a significant body of research has 

emerged focusing on AI-based MSI prediction models 

derived from whole slide images (WSIs). These models, 

particularly within the context of CRC, have yielded 

promising outcomes in the field (Table 1).  

 

The reviewed articles demonstrated variable degrees of 

outcomes as each study used the CNN model in different 

settings, including variations in the type and size of the 

cohorts, as well as the number of convolutions or filters 

employed. The first fully automated, end-to-end deep 

learning system designed to detect dMMR/MSI status in 

CRC was developed by Kather et al44 in 2019 with a 

performance accuracy of 0.84. Since then, a number of 

groups have developed novel CNN models with diverse 

architectures and specialized functionalities. For instance, 

the randomized controlled study performed by Jiang et al40 

tested five sets of machine learning models for their abilities 

to determine MMR/MSI status.  

 

A total of 2,279 patients between the training and test groups 

were enrolled and twelve clinicopathological features were 

incorporated into the development of the predictive models. 

Among the five predictive models, the AUC value of the 

machine-learning random forest (RF) model outperformed 

the logistic regression (LR) method in identifying 

dMMR/MSI. The RF model in the same study exhibited an 

AUC of 0.85, indicating superior performance compared to 

the other models. The study also conducted a comprehensive 

analysis of the strengths and limitations inherent in each 

model.  

 

The support vector machine (SVM) model exhibited the 

capability to perform both linear and nonlinear classification 

and regression tasks. However, it encountered significant 

challenges when processing complex and extensive datasets. 

Conversely, RF demonstrated its ability to recognize and 

identify dMMR and pMMR samples. 

 

In 2021, Lee et al49 developed the highest-performing model 

for predicting MSI at the time with an AUC reaching 0.972. 

The group trained Inception-V3 on a cohort of image patches 

from The Cancer Genome Atlas study (TCGA) WSI data set 

and Saint Mary’s Hospital (SMH) to differentiate between 

normal and cancerous tissues and to determine the MSI 

status. Artifacts in the WSI were automatically excluded, 

eliminating the need for human intervention.  

 

As a result, only accurate tissue patches were used to train 

the normal/tumor classifiers, enabling a clear distinction 

between tumor and normal regions in a WSI. The model 

exhibited AUC of 0.89 when tested on TCGA data and an 
AUC of 0.97 on the SMH dataset, representing the highest 

performance among the studies reviewed. 
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Table 1 

Recent research focusing on DL-based MSI/dMMR status prediction. 

Author/Year CNN Model Training 

Population 

Internal 

Validation 

External 

Validation 

Test population  

AUC (95% CI) 

Method of MSI 

analysis 

Kather et al, 

201944 

ResNet-18 

(CRC and 

other tumors) 

TCGA CRC 

FFPE  

(n=260 pts) 

 

Random 

split 

DACHS   TCGA CRC FFPE 

(n=100 pts) AUC 

0.77 (0.62-0.87) 

DACHS FFPE 

(n=378) 

AUC 0.84  

(0.72-0.92) 

TCGA PCR 

DACHS PCR 

TCGA CRC 

(n= 269 

frozen) 

TCGA CRC frozen 

(n=109 pts) AUC 

0.84 (0.73-0.91) 

DACHS FFPE 

(n=378) 

AUC 0.61  

(0.50-0.73) 

Pressman et 

al, 202064 

ResNet18 TCGA (n=360 

WSIs) 

NA Gangnam Sev. TCGA AUC: 0.79; 

Gangnam Sev.  

(n= 170) 

AUC: 0.76 

NA 

Schmauch et 

al, 202069 

HE2RNA 

with 

ResNet50 

TCGA FFPE 

(n=465 pts) 

Three-fold 

cross 

validation 

None TCGA FFPE: 0.82 PCR 

Kather et al, 

202043 

ShuffleNet TCGA CRC 

FFPE (n=426 

pts) 

Three-fold 

cross-

validation 

DACHS DACHS FFPE 

(n=379 pts) 

AUC 0.89 

 (0.88-0.92) 

TCGA: PCR 

DACHS: PCR 

Echle et al, 

202021 

ShuffleNet MSIDETECT 

CRC  

(n=6,406 pts) 

Random 

split 

Yes MSIDETECT 

AUC: 0.92  (0.90 – 

0.93 ) 

DACHS: PCR; 

TCGA: PCR, 

QUASAR and 

NLCS: IHC; 

YCR-BCIP:IHC 
Three-fold 

cross-

validation 

YCR-BCIP MSIDETECT 

AUC: 0.92  

(0.91-0.93) 

YCR-BCIP-

RESECT (n=771) 

AUC: 0.96  

(0.93-0.98) 

YCR-BCIP-Biopsy 

(n=1531 pts) AUC: 

0.78 (0.75-0.81) 

YCR-BCIP-

Biopsy  

(n=1,531 pts) 

Three-fold 

cross- 

validation 

None YCR-BCIP-Biopsy 

AUC: 0.89 (0.88-

0.91) 

Yamashita et 

al, 202180 

MSInet Stanford 

dataset (n=85 

pts) 

Random 

split 

None Stanford dataset 

(n=15 pts) 

AUC: 0.93  

(0.77-1.00) 

Stanford dataset: 

IHC/PCR 

TCGA:PCR 

 

Four-fold 

cross-

validation 

TCGA Stanford dataset 

(n=15 pts) 

AUC: 0.93  

(0.77-1.0) 

TCGA  

(n=479 pts) 

AUC: 0.77  

(0.72-0.83) 
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Krause et al, 

202146 

ShuffleNet TCGA FFPE 

(n=256 

patients) 

Random 

split 

None TCGA FFPE 

(n=142) 

AUC: 0.74  

(0.68-0.85) 

PCR 

Lee et al, 

202149 

Inception-V3 TCGA FFPE 

(n=470,825 

patches); 

SMH FFPE  

(n=274 WSI) 

10-fold 

cross-

validation 

 

 

None TCGA FFPE 

AUC 0.89  

(0.85-0.92) 

SMH FFPE 

AUC: 0.97 (0.95-

0.98) 

TCGA: PCR 

SMH:PCR/IHC 

TCGA FFPE 

(n=470,825 

patches) 

SMH FFPE TCGA FFPE 

AUC: 0.86  

(0.81-0.90) 

SMH FFPE 

AUC: 0.78  

(0.74-0.83) 

TCGA frozen 

(n=562,837 

patches) 

None TCGA Frozen 

AUC: 0.94  

(0.92-0.95) 

Cao et al, 

202013 

ResNet-18 

using the 

EPLA model 

 

 

 

TCGA-

15COAD 

(n=429 

frozen) 

Random 

split 

 

Asian-CRC of 

all stages from 

Tongshu 

Biotechnology 

Co., Ltd. 

FFPE 

TCGA-COAD 

AUC: 0.88 

(0.81-0.95) 

Asian-CRC 

AUC: 0.64  

(0.60-0.69) 

PCR 

TCGA-COAD 

frozen (90%) 

and Asian-

CRC FFPE 

(10%) 

 Asian-CRC 

AUC: 0.85  

(0.75-0.93) 

TCGA-COAD 

frozen (30%) 

and Asian-

CRC FFPE 

(70%) 

 Asian-CRC 

AUC: 0.92  

(0.88-0.97) 

Bilal et al, 

20219 

ResNet18 

Adapted 

ResNet34 

HoVer-Net 

TCGA-CRC-

DX (n=499 

pts) 

Random 

split 

TCGA-CRC-

DX 

PAIP challenge 

cohort  

(n=47 slides): 

AUC: 0.86 

 (0.04-0.74) 

PCR 

Jiang et al, 

202239 

MIL model TCGA (n=441 

WSI) 

Three-fold 

cross 

validation 

PAIP AUC 0.88 ± 0.03 IHC 

Echle et al, 

202220 

ResNet18 DACHS 

(n=2,039 pts). 

All FFPE, 

only TCGA 

had a small 

number of 

frozen 

sections 

Leave-

one-

cohort-out 

cross-

validation 

Yes AUC within-cohort 

0.91 (0.88-0.93) 

 

AUC deployment 

0.89 (0.87 – 0.92) 

PCR or IHC 

QUASAR 

(n=1,774 pts) 

AUC within-cohort 

0.90 (0.88-0.92) 

AUC deployment 

0.93 (0.91-0.95) 

TCGA  

(n=426 pts) 

AUC within-cohort 

0.79 (0.72-0.85) 
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AUC deployment 

0.91 (0.87-0.95) 

NLCS  

(n=2,098 pts) 

AUC within-cohort 

0.85 (0.82-0.87) 

AUC deployment 

0.92 (0.90-0.94) 

YCR-BCIP 

(n=805 pts) 

AUC within-cohort 

0.93 (0.90-0.96) 

 

AUC deployment 

0.96 (0.94-0.98) 

DUSSEL  

(n=196 pts) 

AUC within-cohort 

0.75 (0.64-0.85) 

AUC deployment 

0.85 (0.74-0.93) 

MECC  

(n=683 pts) 

AUC within-cohort 

0.70 (0.64-0.75) 

AUC deployment 

0.74 (0.69- 0.80) 

UMM (n=35 

pts) 

AUC within-cohort 

0.98 (0.93-1.00) 

AUC deployment 

0.92 (0.69-1.00) 

MUNICH 

 (n=287 pts) 

AUC within-cohort 

0.80 (0.71-0.88) 

AUC deployment 

0.88 (0.80-0.95) 

Ding et al, 

202219 

- TCGA-COAD 

(n=459 WSI 

images) 

NA TCGA-READ 

CPTAC-

COAD 

AUC 83.92  

(77.41-87.59) 

TCGA-COAD 

AUC: 83.92  

(77.41-87.59) 

TCGA-READ 

AUC: 61.28  

(53.28-67.93) 

PCR or IHC 

Jiang et al, 

202239 

MIL TCGA 

(n=441) 

SYSUCC-

surgical 

(n=355) 

SYSUCC-

biopsy 

(n=341) 

PAIP (n=78) 

3-fold 

cross 

validation 

Yes AUC 0.88  

(0.85-0.92) 

AUC 0.84  

(0.82-0.86) 

AUC 0.76  

(0.73-0.80) 

AUC 0.88  

(0.85-0.90) 

IHC 

Schirris et al, 

202268 

DeepSMile TCGA-CR 

(n=360) 

Random 

split 

NA 0.82 (0.77-0.86) PCR 

Lou et al, 

202251 

PPsNET Shandong 

Hospitals 

(n=144) 

Random 

split 

NA 0.94 IHC 

Guo et al 

202327 

Swin-T TCGA‐CRC‐

DX 

 

 

Intra‐

cohort 

four‐fold 

cross‐

validation 

Inter‐cohort 

external 

validation and 

TCGA-CRC-DX 

AUC  0.91± 0.02 

(mean ± SD) (23% 

improvement over 

recently published 

AUC values on the 
same dataset (0.86 

from Bilal9) and 

IHC 
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0.74 from Kather et 

al 

MCO AUC: 0.90 

(0.85-0.95) 

Jiang et al, 

202340 

XGBoost 

(extreme 

gradient 

boosting, 

SVM 

(support 

vector 

machine), 

Naïve Bayes 

(NB), 

And RF 

(random 

forest and 

logistic 

regression. 

Wuhan Union 

Hospital  

(n=2,279 

patients) 

No 10-time cross 

validation 

XGBoost AUC: 

0.80 

IHC 

SVM AUC: 0.81 

NB AUC: 0.74 

RF AUC: 0.85 

LR AUC: 0.78 

Chang et al, 

202314 

WiseMSI TSMCC 

(n=1579) 

TCGA 

(n=609) 

NA 10-fold cross 

validation 

0.95 (0.94-0.96) 

0.63 (0.70-0.73) 

PCR 

Saillart et al, 

202366 

MSIntuit TCGA 

(n=859) 

PAIP (n= 47) 

MPATH 

(n=600) 

NA NA TCGA: 0.93  

(0.90-0.96) 

PAIP: 0.97  

(0.90-0.99) 

MPATH-DP200: 

0.88 (0.84-0.91) 

MPATH-UFS: 0.86 

(0.83-0.90) 

IHC 

* AUC, Area Under the Curve; TCGA, The Cancer Genome Atlas study; CRC, Colorectal Cancer; NA: Not Available, WSI, Whole 

Slide Images; pts, patients; FFPE, Formalin-Fixed Paraffin-Embedded; PAIP: Pathology Artificial Intelligence Platform. DACHS, 

Darmkrebs: Chancen der Verhütung durch Screening (CRC prevention through screening study abbreviation in German); (Stanford 

dataset, Stanford University Medical Center (USA) Gangnam sev, Gangnam Severance Hospital (South Korea); MSIDETECT:A 

consortium composed of TCGA, DACHS, the United Kingdom-based Quick and Simple and Reliable trial (QUASAR) and the 

Netherlands Cohort Study (NLCS); YCR-BCIP:Yorkshire Cancer Research Bowel Center Improvement Programme; SMH, Saint 

Mary’s Hospital (South Korea). TSMCC: TongShu MSI colorectalcancer; MPATH, medipath. PPsNET: depth refinement network. 

MIL: multiple instance learning. 

 

The same study trained a second model exclusively on the 

TCGA dataset and when tested on the SMH dataset, it 

demonstrated a reduced AUC of 0.78 and AUC of 0.86 on 

the TCGA cohort. The superior performance of the first 

model can be attributed to the inclusion of a portion of the 

SMH dataset in the training phase which improved the ethnic 

diversity. Overall, these results demonstrated that by 

automatically removing artifacts and selecting tumor 

patches with high tumor probability, the DL-based system 

could screen out a considerable number of tissue slides for 

their MSI status.  

 

Selecting an appropriate methodological model for CNNs is 

as crucial as the choice of training and validation cohorts 

which can impact the performance and generalizability of 

the model. Ensuring the dataset includes a comprehensive, 

representative sample of the population is essential to avoid 

biases and improve the model's generalization. Echle et al21 

addressed this challenge by developing a deep learning-

based classifier for determining dMMR/MSI status in two 

studies. In the initial study performed in 2020, the group 

trained ShuffleNet on a large dataset comprising 6,406 slides 

from nine patient cohorts representing various countries and 

ethnicities.  

 

The model achieved remarkable clinical-grade performance 

in predicting MSI status, evidenced by an AUC of 0.96 for 

the external cohort and AUC of 0.92 for the internal cohort, 

all accomplished without the use of any manual annotations. 

In the second study performed in 2022, a ResNet18 neural 

network model was trained on H and E stained slides 

obtained from 8,343 patients with colorectal tumors across 

different countries and of different ethnicities (Table 1). The 

classifiers demonstrated a clinical-grade performance with 

an AUC of 0.96 without the need for pre-processing, 

suggesting potential utility for high-throughput, cost-
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effective evaluation of colorectal tissue specimens. During 

the same time period, Bilal and colleagues9 developed a 

weakly supervised deep learning architecture incorporating 

three distinct CNNs to predict MSI status, clinically relevant 

mutations and molecular pathways.  

 

The study employed ResNet34 and ResNet18 architectures. 

The algorithms were trained using balanced datasets 

comprising of tumor and non-tumor tiles. By utilizing the 

same patient cohort and dividing the dataset into distinct 

training and testing sets, the authors compared their MSI 

prediction performance with that of Kather et al44. Their 

iterative sampling method demonstrated superior 

performance, achieving AUC of 0.90, as opposed to the 

work published by Kather et al44 which achieved an AUC of 

0.77. Thus, the developed algorithm is considered as a 

promising tool for the rapid prediction of clinically 

significant mutations and molecular pathways, such as MSI, 

facilitating patient stratification for targeted therapies more 

rapidly than traditional sequencing or IHC methods.  

 

Another novel label-free approach using infrared imaging 

and AI to classify MSI status in CRC was developed by 

Gerwert et al24. The novelty of the developed model was its 

ability to classify MSI status based on unstained FFPE 

sections, thereby leaving the specimen unmodified for 

subsequent analyses. The study utilized Quantum Cascade 

Laser Infrared (QCL-IR) microscopes and classified the data 

using two CNN architectures. The first architecture, a 

modified U-Net, was utilized to identify regions containing 

cancer cells whereas the second architecture, VGG-Net, was 

used to determine MSI status. The model exhibited a 

promising performance with the validation AUC score 

reaching 0.9 (Table 1).  

 

In addition to CNN models and cohort factors, several 

challenging technical issues must be addressed during the 

development of new DL tools. For instance, processing 

WSIs using CNNs presents significant challenges in terms 

of memory and computational processing time. WSIs are 

extremely high-resolution images, often exceeding 

gigapixels in size, which demand substantial memory 

capacity that can overwhelm standard computing 

resources42,72. Additionally, the computational processing 

time required to analyze such large-scale images through 

CNNs is relatively long, leading to prolonged training and 

prediction times that can hinder real-time diagnostic 

applications.  

 

To address these issues, Tong et al76 implemented a 

downscaling methodology where a segmentation-based 

technique was utilized to derive pixel-level image data 

through computational analysis. This groundbreaking 

whole-slide-level dMMR/pMMR deep learning detector, 

referred to as SPEED, significantly accelerated 
computational processing, reducing it by a factor of 1,700 

while maintaining exceptional performance. In an internal 

validation set, it achieved an AUC of 0.989, surpassing the 

results of prior research in the field. These results indicate 

that artificial intelligence designed for the assessment of 

dMMR/MSI status presents a significantly faster and more 

economical alternative to conventional molecular assays. 

Consequently, the implementation of AI in this context 

could enhance diagnostic efficiency and reduce associated 

costs. 

 

Limitations and prospects 
Light microscopy remains the gold standard tool for 

assessing tissue sections in pathology. However, this 

technique faces several limitations including labor-intensive 

processes and susceptibility to subjective interpretation. The 

fact that numerous patients do not undergo MSI testing 

despite clinical guidelines advocating for its universal 

testing underscores the urgent need for the development and 

adoption of new technologies73. The design of an effective 

CNN architecture requires careful consideration of 

numerous parameters, such as the number of convolution 

layers, filter sizes and the complexity of the models 

themselves.  

 

Additionally, balancing the trade-offs between model 

complexity and computational efficiency is crucial, as overly 

complex models may lead to overfitting, while simplified 

models might underperform and achieving the right balance 

is essential for achieving robust and accurate CNNs31,61,62.  

 

A common limitation among the reviewed articles was the 

bias in patient selection where studies used a single cohort 

(e.g. TCGA) without incorporating additional cohorts. This 

limitation restricts the diversity of the study population and 

consequently affects its generalizability46,69. The ability to 

have diverse multi-national cohorts is essential for 

developing generalizable models that reflect differences 

between diverse ethnicities. For instance, a model trained 

with TCGA data exhibited poor performance when applied 

to a Japanese cohort44. Similarly, Cao et al13 demonstrated 

low model performance when a model was trained on a 

TCGA cohort or tested on an Asian cohort; however,  

incorporating an Asian cohort into the training set 

significantly improved the model’s performance13.  

 

Additionally, securing an independent external validation set 

is essential in model evaluation63 to clearly differentiate 

between training and validation groups. Thus, according to 

these observations, it has been hypothesized that 

morphological variances in colon cancer between Caucasian 

and Asian patients exist and may hinder the generalizability 

of deep learning systems.  

 

Based on the data published by Pressman et al64, the 

performance of the model on the Gangnam test dataset was 

observed to be within one standard deviation of its 

performance on the TCGA test dataset, where the model was 

trained exclusively on the TCGA data, which included a 

limited number of Asian patients64.  
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The broad applicability of AI-based classifiers remains a 

significant concern for the applicability of DL models in the 

clinical setting. Jang et al34-36 and others48,49 found that 

classifiers designed to differentiate various molecular 

characteristics from tissue images using TCGA datasets 

exhibited suboptimal performance when applied to Korean 

datasets. 

 

An effective AI-based analysis for WSI also relies on several 

factors including the type of sample (frozen or FFPE), the 

staining quality and the scanning technology employed. 

Thus, the limited generalizability of these models can be 

attributed, in part, to different sample preservation and 

preparation methods. For instance, frozen slides exhibit a 

distinct morphology compared to FFPE slides due to the 

freezing process35.  

 

In comparing their classification performance, patch-level 

results were robust only when classifiers were trained 

exclusively on one tissue type. Conversely, when classifiers 

were trained on two tissue types (i.e. frozen and FFPE 

tissues), the performance for each tissue modality was 

suboptimal.  

 

Thus, the technique employed in sample collection and 

preparation can adversely impact the model performance49. 

This observation is supported by Jang et al34-36 findings 

where model performance was reported to vary among the 

investigated biomarker genes where higher AUCs were 

achieved for APC and KRAS using frozen WSIs over FFPE 

WSIs, indicating that frozen WSIs may be more 

advantageous for molecular testing, despite FFPE methods 

excelling in cellular morphology preservation. In addition to 

the type of sample, discrepancies were noted among the 

studies concerning the techniques used to determine 

dMMR/MSI status in the original patient samples, with some 

studies employing PCR and others using IHC.  

 

Considering such differences is important as each test 

provides different information about the tumor samples. 

Specifically, IHC provides information about the MMR 

proteins expressed in the sample, whereas MSI by PCR 

measures MMR function by detecting changes in DNA that 

result when major MMR function is lost. Consequently, 

these differences can have a significant impact on the model 

validation61. 

 

Finally, due to memory limitations, even server-grade 

graphics processing units (GPUs) are incapable of 

processing high-resolution WSIs. Consequently, the 

majority of deep learning models have been developed using 

classification-based approaches, whereby small patches are 

extracted from WSIs for training purposes rather than 

utilizing the full-size WSIs61. This necessitates the 

segmentation of a WSI into thousands of smaller patches 
which compromise the continuity of the image and result in 

a significant increase in computational data5. These issues 

can be partially solved by using modern WSI scanners 

designed with an autofocus optics system that choose focal 

planes to precisely capture the three-dimensional structure 

of tissue as a two-dimensional digital image59.  

 

Nevertheless, these scanners might generate digital images 

with out-of-focus or blurry sections if the AF optics system 

incorrectly selects focus points at an improper plane relative 

to the tissue's actual height. Additionally, color 

normalization can pose challenges. The high cost of 

infrastructure, such as rapid scanners and large storage 

spaces, poses a significant challenge59. Therefore, 

standardizing scanner systems, image processing models 

and virtual microscopy interfaces, is vital for advancing 

image analysis methods in pathology. 

 

Conclusion  
Light microscopy remains the gold standard in pathology, 

but there is an increasing demand for image analysis tools 

capable of performing complex analyses with high precision 

and reproducibility. The cost of infrastructure including 

rapid scanners, large storage spaces and integration into 

medical information systems, presents a barrier. Hence, 

advancing image analysis methods are becoming 

increasingly crucial for pathologists, driving the need for 

sophisticated tools to meet these demands. AI-based 

predictive analytics allowed scientists to analyze complex 

data sets from genomics, proteomics and entire pathology 

slides, resulting in a more thorough characterization of 

patients and improved precision in prognosis. These 

advancements promise to streamline pathological 

workflows.  

 

In addition, the employment of AI technology can reduce 

variability due to subjective assessments, making pathology 

more consistent. Although AI has not yet replaced traditional 

diagnostic tools, it shows significant potential in predicting 

MSI status based on morphological features. This 

technology also tackles challenges like high costs, labor 

intensity and subjective interpretation. Given that many 

patients miss out on testing despite clinical 

recommendations for universal MSI testing, the study 

highlights the need for new technologies.  
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