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Abstract

Effective treatment decisions for colorectal cancer
(CRC) depend on the histological classification and
microsatellite instability (MSI) status of the patient’s
biopsy. In recent years, artificial intelligence (Al) has
emerged as a valuable tool in the diagnostic process,
offering efficiency, reducing the need for extensive
manpower and maintaining accuracy. This review
explores recent advancements in Al technology and its
effectiveness in identifying prognostic biomarkers
related to CRC and aims to inform clinicians and
gastroenterologists about novel patient management
strategies. A narrative non-systematic review of
existing literature on using Al for detecting deficient
mismatch repair (IMMR)/MSI in CRC diagnosis was
performed. Searches were conducted in the PubMed
database using a combination of keywords such as
colorectal cancer diagnosis, artificial intelligence and
deep learning, focusing on publications from 2019
onward.

The reviewed articles exhibited varying outcomes, with
each utilizing the CNN model under differing
conditions like cohort types and sizes and convolution
or filter numbers, highlighting specific strengths and
limitations for each model. Al-driven predictive
analytics offered researchers superior insights into
genomics and proteomics data, elevating patient
characterization precision and streamlining pathology
workflows.

Keywords: Convolutional neural networks, cancer
pathology, machine learning, predictive value of tests, DNA
mismatch repair.

Introduction

Through a journey that may last for years, patients and their
families will have to deal with the inevitable emotional pain
and financial strains associated with cancer. Colorectal
cancer (CRC), which includes both colon and rectal cancer,
is identified worldwide as the third most common type of
cancer and the second most cancer-related death with
approximately 1.93 million new cases reported in 2022,
The incidence of colon cancer is relatively similar between
genders for the 40-59 age categories but the incidence
increases slightly in males aged 60 and above!!. Although

https://doi.org/10.25303/2011rjbt4020416

rectal cancer exhibits a higher prevalence among males,
right-sided colon cancer, a more aggressive form of colon
cancer, has a greater incidence in females!. Globally, the
incidence of CRC is highest in the regions of Australia/New
Zealand and Europe, with a rate of 40.6 per 100,000 and a
mortality rate of 20.2 per 100,000 for males®.

Conversely, the lowest incidence rates of the same disease
are observed in various African regions and Southern Asia,
where the rate is 4.4 per 100,000 with a mortality rate of 2.5
per 100,000 females®. The differences in the global rates of
CRC reflect the multifaceted impact of various influences
such as country's Human Development Index levels (HDI)
and genetic factors. Prediction models by the same study
anticipated that by 2040, there will be 3.2 million new cases
and 1.6 million fatalities due to CRC, with the majority
occurring in Nations with high HDI. CRC not only
detrimentally affects the quality of life of those diagnosed
but also incurs substantial economic burdens. These include
expenses associated with early disease stages such as
screening, diagnosis, imaging and surgical interventions, as
well as expenses related to later stages of the disease (e.g.
hospitalization, medication and durable medical equipment).

The estimated global economic cost of CRC is $2.8 trillion
internationally, accounting for 10.9% of the global economic
cost of cancer'®. Hence, promoting screening programs
designed for early colon cancer detection is crucial to reduce
the financial burden associated with therapeutic
interventions and to enhance the efficacy of treatment
modalities. The risk of developing colon polyps increases
with advancing age, male gender, high-fat low-fiber diet,
excess alcohol intake, tobacco use and family history of
colon cancer®. In addition, patients with Crohn’s disease
and long-standing ulcerative colitis have an increased risk of
developing CRC". Such risk factors often lead to the silent
development of the disease, leading to nearly half of the
patients aged 45-50 years being diagnosed at an advanced
stage of the disease—stage Ill or 1V, a point at which the
prognosis becomes less favorable®”7°,

Microsatellite instability (MSI) and DNA mismatch repair
(MMR) are critical factors in the diagnosis and treatment of
colon cancer. MSlI is a condition referring to the buildup of
insertion or deletion mutations at microsatellite repeat
sequences within cancer cells, caused by a functional failure
in one or more key DNA MMR proteins which are crucial
for correcting DNA replication errors. Identifying MSI
status can help to predict prognosis and response to certain
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therapies such as immunotherapy3!#. Moreover, MMR
deficiency, often associated with Lynch syndrome, can
guide genetic counseling and testing in affected families;
thereby enhancing personalized treatment strategies and
improving patient outcomes. Traditionally, hematoxylin and
eosin (H&E) staining of tissue biopsies or molecular
methods is utilized for determining the AMMR/MSI status.

However, these techniques are generally labor-intensive and
costly. Consequently, there is a pressing need for the
development of innovative and accurate methods for both
diagnosis and prognosis. This is because these markers are
essential for determining the most effective treatment
options for individual CRC patients. In this regard,
advancements have been made to refine the methodologies
aimed at improving diagnostic and prognostic protocols by
integrating artificial intelligence (Al) into pathology. The
aim of this review is to outline the utility of Al in
applications related to colon cancer diagnosis and prognosis.
Specifically, this review concentrates on the prediction
models developed within the preceding five years, utilizing
data from routinely stained H and E histopathology slides to
determine dMMR/MSI status. Additionally, limitations and
future directions for improvement are also discussed.

A narrative non-systematic review of the published literature
on Al technology utilization for dMMR/MSI detection
within the context of colorectal cancer diagnosis was
conducted. This review involved searching PubMed
databases with different combinations of keywords and
phrases used to narrow down and to identify pertinent
sources. These keywords included, but were not limited to,
colorectal cancer diagnosis, artificial intelligence, deep
learning and MSI. The review encompasses only material
published since 2019, with non-English publications
excluded.

CRC diagnosis, treatment and prognosis

The development of CRC usually starts with the formation
of a neoplastic polyp invading the muscularis mucosa and
into the submucosa. While most polyps are benign, a
histological examination at this early stage is necessary to
determine whether the polyp has the potential to develop into
a malignant tumor®2, If the tumor is found to be malignant,
it can be staged based on the tumor-node-metastasis (TNM)
histopathological criteria established by the American Joint
Committee on Cancer (AJCC) and the Union for
International Cancer Control (UICC)’. TNM staging relies
on three histopathological criteria: the primary tumor size
(T), the number of involved regional lymph nodes (N) and
the presence of distant metastases (M)"’.

In addition to the endoscopic biopsy, number of diagnostic
imaging procedures can be performed such as preoperative
ultrasound, computed tomography scans and magnetic
resonance imaging scans to estimate the involvement of the
rectum wall and local lymph node metastases”®. The TNM
system has similar survival rates for both rectal and colon
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cancers, supporting the use of the same staging system for
both these diseases®. The staging element “T” is crucial for
prognosis, as research indicates that patients diagnosed with
T4, NO tumors exhibit lower survival rates compared to
those with T1-2, N1-2101630_ Similarly, the regional lymph
node classification “N” is crucial for determining the disease
metastasis. The AJCC and The College of American
Pathologists (CAP) recommend the examination of a
minimum of 12 lymph nodes??2374, Nonetheless, a definitive
consensus on the minimum number of lymph nodes required
for the accurate staging of stage Il cancer is lacking and
pathologists are encouraged to retrieve as many lymph nodes
as possible for staging colon cancers.

All newly identified cases of colon cancer must undergo
screening for genetic mutations, along with performing a
comprehensive colonoscopy and establishing baseline levels
of carcinoembryonic antigen (CEA). Genetic mutation in
MMR genes is characterized by mutations in MLH1, MSH2,
MSHS6, or PMS2 which result in DNA replication error. Such
mutations can be identified by immunohistochemistry (IHC)
to provide information about the expressed MMR proteins.
Determining MSI status, an MMR byproduct, is performed
by molecular techniques®®. The high concordance rate of
dMMR and MSI, exceeding 95%, makes them nearly
interchangeable®.

A normal IHC test implies that all four MMR proteins are
normally expressed and is often reported as proficient MMR
(PMMR). The absence of expression of one or more of the
four DNA MMR proteins is often reported as positive IHC
or deficient MMR (dMMR). In addition to blood
biomarkers, patients diagnosed with invasive colon cancer
necessitate an initial computed tomography (CT) scan of the
chest and abdominopelvic regions®.

To determine the optimal therapy for each patient, the
dMMR/MSI status should be determined for all newly
diagnosed patients to guide the disease diagnosis and to
determine the treatment plan. Based on the most recent
National Comprehensive Cancer Network (NCCN)
guidelines, patients with early stages (UICC stage I) and
stage Il with MSI-H are universally accepted to be treated
with surgery accompanied by lymph node resection.
Similarly, low-risk stage 1l colon cancer patients (with MSS
or proficient MMR (pMMR)) are also treated with surgery
and lymph node resection and can be observed without
adjuvant therapy, or considered for capecitabine or 5-
FU/leucovorin (LV).

On the other hand, stage Il patients (MSS/pMMR) at high
risk for systemic recurrence and displaying poor prognostic
features are considered for 6 months of adjuvant
chemotherapy with 5-FU/LV, capecitabine, or FOLFOX, or
3 months of CAPEOX®%17. Low-risk (T1-3, N1) patients with
stage Il of disease are recommended to have adjuvant
treatment of CAPEOX?°, or 3 to 6 months of FOLFOX
among other treatment options?®. Patients with high-risk (T4,
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N1-2 or any T, N2) and stage Il of disease, are
recommended for 6 months of FOLFOX, or 3 to 6 months
of CAPEOX, among other treatment options.

Patients with metastatic CRC should have tumor genotying
for RAS and BRAF mutations. This is especially important
to determine the optimal systemic therapy’. Stage IV and
recurrent CRC are treated by surgery, chemotherapy and
target therapy with monoclonal antibodies targeting growth
factors (vascular endothelial growth factor receptors
(VEGFR) and epidermal growth factor receptors (EGFR).
The specific order and timing of these treatments vary
among patients and the choices of adjuvant therapies and
management protocols have been extensively reviewed
elsewhere and are beyond the scope of this review’:%,

In general, the prognosis of CRC can be influenced by a
number of factors, reflecting the substantial variability in the
5-year survival rate. Key determinants include the patient’s
age, dietary habits, timing of therapy, tumor localization,
body mass index and comorbidities among other factors. The
pathological stage is considered as the most significant
prognostic indicator. The 5-year overall survival rate for
colon cancer is estimated to be 85% for stage I, 70-80% for
stage Il, 35-65% for stage Il and 5% for stage IV. These
survival rates translate to 90% for localized tumors, 73% for
regional tumors, 13% for distant tumors and an overall 63%
for all cases.

The risk of CRC recurrence following curative surgery is
estimated to range between 30 and 40% with 40-50% of
recurrences occurring within the first few years after the
initial resection surgery?®. The probability of CRC
recurrence has been associated with number of risk factors
including age at diagnosis, tumor location and stage and
number of dissected lymph nodes, pre- and post-operative
CEA serum levels and the type of the performed resection
procedure®”-6583,

Based on the insights obtained from the histological
examination and imaging, disease management and
prognosis can be determined. Although TNM staging has
long been considered a universal staging system, it exhibits
a notable variance in prognostic accuracy among patients
with the same stage, indicating its limitation in predicting
outcomes accurately*®. In response to this limitation, a
number of novel tools are being investigated to enhance the
prognostic efficacy of CRC. These tools seek to optimize the
stratification of patients by distinguishing individuals at low-
risk and high-risk of cancer recurrence. Such advancement
holds the potential to offer valuable guidance in determining
the most suitable treatment regimen, particularly for patients
anticipated to derive substantial benefits.

Al in pathology

Al refers to the ability of machines to carry out tasks in a
way that mimics human intelligence in terms of problem-
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solving and pattern recognition among many other tasks. In
the field of pathology, Al can analyze histopathological
images and differentiate cancerous cells from non-cancerous
ones®%. Unlike static rule-based systems, Al algorithms can
modify their outputs based on new data or feedback, making
them more flexible and adaptable. Machine learning models
can analyze large datasets, including patient history, genetic
information and treatment outcomes, to forecast the likely
trajectory of the disease®?. This enables oncologists to tailor
personalized treatment plans for each patient, optimizing the
chances of recovery and enhancing the quality of care3!. This
process reduces the likelihood of human error and improves
diagnostic precision, enabling early detection and better
patient outcomes.

Al encompasses a variety of subfields, each contributing
distinct methodologies and clinical applications to the field
of pathology. Machine learning (ML) refers to the ability of
a system to use algorithms to learn from the provided data
and subsequently make predictions or solve problems based
on this data®’. In CRC pathology, ML can be used to analyze
large datasets of histopathological images to identify
patterns correlated with cancerous tissue, thus enhancing
diagnostic accuracy®. Deep Learning (DL), is a branch of
ML that uses layers of neural networks and multiple layers
to process raw data without manual feature extraction’. For
instance, images paired with corresponding class labels (e.g.
H&E stained images with benign or malignant cells) are
introduced to the system as the training set and upon the
introduction of new input data, the system can distinguish
and classify the images even without any pre-existing
assumptions.

Neural networks (NNs) refer to layers of nodes: an input
layer, one or more hidden layers and an output layer. Each
node functions as an artificial neuron connected to the next
node and each has a specific weight and threshold value. A
node activates and transmits data to the following layer if its
output surpasses the threshold value; otherwise, it does not
pass any data®’. NNs are trained using data to enhance their
accuracy over time and the weights are adjusted during the
learning process to minimize error and improve the model’s
accuracy. NNs are effective in processing data, recognizing
patterns and predictions. Once the algorithms are fine-tuned,
these networks become important tools by enabling rapid
classification and clustering of data.

Deep Neural Networks (DNNs) features utilize multiple
layers of nodes that are densely interconnected, which
facilitates global feature learning. The term "deep" in deep
learning signifies the number of layers within a neural
network. When a neural network consists of more than three
layers, including input and output layers, it qualifies as a
deep learning algorithm3’. DNNs are commonly used across
a range of machine-learning tasks’*. Convolutional Neural
Networks (CNNs) use mathematical operations known as
convolution in one or more of their layers. The concept of
CNN architecture is illustrated in figure 1.
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Figure 1: An overview of convolutional neural networks (CNNs) process in digital pathology. A) The training dataset
is used for learning and to fit the initial parameters of the classifier. The validation dataset is used to adjust the
parameters of the classifier. The test dataset consists of held-out data that provides an unbiased evaluation of the
final prediction model. B) H and E scanned images are derived from the original tissue blocks. The feature extraction
process utilizes a convolutional neural network (CNN), which is an intricate network of interconnected processes
organized in layers, tasked with extracting higher-level features from the images. Pooling layers summarize the
features extracted by convolution layers and reduce the dimensions of the images. Following a series of convolution
and pooling layers, the classification layer predicts the output by depicting AUC-ROC value.

However, unlike CNNs, DNNs do not have specialized
layers for capturing spatial hierarchies, making them more
versatile but potentially less efficient for tasks specifically
related to images®’. The ability of CNNs to automatically
identify features from images makes them well-suited for
image classification in the field of pathology especially
when the original WSI cannot be used for Al and requires
processing prior analysis®!.

In CNN, the convolution process involves the addition of a
filter over the input data to produce a feature map, capturing
spatial hierarchies in the data®?. CNNs are structured into
two primary components: the feature extraction layer and the
classification layer, each serving distinct purposes. The
feature extraction layer integrates convolution and pooling
layers. The convolution layer generates newly modified
versions of images by applying various types of filters, such
as th identifying edges and enhancing contrast. The pooling
layer condenses the features of images produced by the
convolution layer®?. Repeating the preceding process
enables the segregation of significant attributes from the
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input data®. Following a series of multiple cycles of
convolution and pooling, the classification layer utilizes the
extracted features to classify the input data into predefined
categories, thereby forming the network’s prediction. The
predicted result is then compared against a reference
standard provided in the datal. If discrepancies are
identified, the filters are adjusted to enhance prediction
accuracy®.. This makes CNNs highly efficient for tasks
involving image recognition and video analysis.

Inception-V3, ResNET, ShuffleNet, MSinet, MIL, WisMSI
and MSintuit are among the CNN architectures widely used
for image classification tasks, each providing their unique
advantages>?6:3882 For instance, Inception-V3 is most
suitable for high-performance settings due to its depth and
accuracy®, while ShuffleNET is superior in efficiency and
speed®. MSlInet is specialized in multi-scale feature
extraction and is mostly used in clinical oncology imaging®’.
By operating these Al techniques, the field of pathology is
advancing toward more accurate and efficient diagnostic
protocols.
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To maximize the performance of deep learning models,
selecting large and diverse training and validation data sets
is crucial®. The training dataset consists of a set of
pathology images that the Al model uses to learn and
identify patterns associated with different pathological
conditions. Through this process, the model adjusts its
algorithms to improve accuracy and performance. The
validation dataset is used to evaluate the model's
performance and to ensure that the results are not confined
to the initial training dataset, thereby confirming its
generalizability®3. Finally, the testing dataset includes held-
out data to evaluate how well the model performs in real-
world scenarios outside the training data. This approach
helps in fine-tuning the model, preventing overfitting and
ensuring that it can accurately interpret new and unseen
pathology slides®.

The evaluation of these models is based on their Area Under
the Receiver Operating Characteristic curve (AU-ROC, or
AUC) values, which serve as an essential metric in assessing
the performance of CNNs. The AUC quantitatively
measures the model's capacity to differentiate between
classes, thereby offering a comprehensive indication of its
classification accuracy. The plot represents the relationship
between the true positive rate and the false positive rate
across various classification thresholds. A high AUC (close
to 1) indicates that the model is effective in distinguishing
between the two classes and its predictions are reliable.

Conversely, a low AUC (close to 0) suggests poor
performance. An AUC around 0.5 implies that the model is
essentially making random guesses, demonstrating no ability
to separate the classes and indicating that the model is not
learning any meaningful patterns from the data'?®. The
scientific community continues to eagerly compete in the
development of models that achieve improved AUC values,
thereby advancing the ability to accurately determine
MSI/dMMR status in clinical practice.

Predicting dMMR/MSI status by Deep Learning

approaches

Immune checkpoint inhibitors (ICI) have been regarded as a
successful treatment strategy for various solid tumors. ICI
acts by counteracting tumor-mediated immune suppression,
creating a proinflammatory microenvironment that can
facilitate the destruction of cancer cells. Among the first
FDA-approved ICI therapeutics were nivolumab (anti-
PD1)", atezolizumab (anti-PDL1) and ipilimumab (anti-
CTLA-4)**, These approvals were due to the observation
that tumors with high levels of MSI (MSI-H), regardless of
their site, are resistant to chemotherapy and sensitive to
ICI84548  Despite the NCCN recommendation for
dMMR/MSI screening, not all patients can have the test873,

This limitation arises from the restricted availability of these
tests mostly in tertiary hospitals and their high cost'®4!, The
fact that only a small percentage of CRC patients (~15%)
have MSI-H, Al technology enables the prediction of
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therapeutic efficacy by forecasting patient responses to
treatment*®8%, This predictive capability can mitigate the risk
of patients experiencing toxicity without therapeutic benefit.
In the past few years, a significant body of research has
emerged focusing on Al-based MSI prediction models
derived from whole slide images (WSIs). These models,
particularly within the context of CRC, have yielded
promising outcomes in the field (Table 1).

The reviewed articles demonstrated variable degrees of
outcomes as each study used the CNN model in different
settings, including variations in the type and size of the
cohorts, as well as the number of convolutions or filters
employed. The first fully automated, end-to-end deep
learning system designed to detect dAMMR/MSI status in
CRC was developed by Kather et al** in 2019 with a
performance accuracy of 0.84. Since then, a number of
groups have developed novel CNN models with diverse
architectures and specialized functionalities. For instance,
the randomized controlled study performed by Jiang et al*
tested five sets of machine learning models for their abilities
to determine MMR/MSI status.

A total of 2,279 patients between the training and test groups
were enrolled and twelve clinicopathological features were
incorporated into the development of the predictive models.
Among the five predictive models, the AUC value of the
machine-learning random forest (RF) model outperformed
the logistic regression (LR) method in identifying
dMMR/MSI. The RF model in the same study exhibited an
AUC of 0.85, indicating superior performance compared to
the other models. The study also conducted a comprehensive
analysis of the strengths and limitations inherent in each
model.

The support vector machine (SVM) model exhibited the
capability to perform both linear and nonlinear classification
and regression tasks. However, it encountered significant
challenges when processing complex and extensive datasets.
Conversely, RF demonstrated its ability to recognize and
identify dMMR and pMMR samples.

In 2021, Lee et al*® developed the highest-performing model
for predicting MSI at the time with an AUC reaching 0.972.
The group trained Inception-V3 on a cohort of image patches
from The Cancer Genome Atlas study (TCGA) WSI data set
and Saint Mary’s Hospital (SMH) to differentiate between
normal and cancerous tissues and to determine the MSI
status. Artifacts in the WSI were automatically excluded,
eliminating the need for human intervention.

As a result, only accurate tissue patches were used to train
the normal/tumor classifiers, enabling a clear distinction
between tumor and normal regions in a WSI. The model
exhibited AUC of 0.89 when tested on TCGA data and an
AUC of 0.97 on the SMH dataset, representing the highest
performance among the studies reviewed.
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Author/Year | CNN Model Training Internal External Test population Method of MSI
Population | Validation | Validation AUC (95% CI) analysis
Kather et al, ResNet-18 TCGA CRC Random DACHS TCGA CRC FFPE TCGA PCR
20194 (CRC and FFPE split (n=100 pts) AUC DACHS PCR
other tumors) (n=260 pts) 0.77 (0.62-0.87)
DACHS FFPE
(n=378)
AUC 0.84
(0.72-0.92)
TCGACRC TCGA CRC frozen
(n= 269 (n=109 pts) AUC
frozen) 0.84 (0.73-0.91)
DACHS FFPE
(n=378)
AUC 0.61
(0.50-0.73)
Pressman et ResNet18 TCGA (n=360 NA Gangnam Sev. | TCGA AUC: 0.79; NA
al, 20208 WSiIs) Gangnam Sev.
(n=170)
AUC: 0.76
Schmauch et HE2RNA TCGA FFPE | Three-fold None TCGA FFPE: 0.82 PCR
al, 2020%° with (n=465 pts) cross
ResNet50 validation
Kather et al, ShuffleNet TCGA CRC | Three-fold DACHS DACHS FFPE TCGA: PCR
202043 FFPE (n=426 Cross- (n=379 pts) DACHS: PCR
pts) validation AUC 0.89
(0.88-0.92)
Echle et al, ShuffleNet MSIDETECT Random Yes MSIDETECT DACHS: PCR;
2020% CRC split AUC: 0.92 (0.90 - TCGA: PCR,
(n=6,406 pts) 0.93) QUASAR and
Three-fold | YCR-BCIP MSIDETECT NLCS: IHC;
Cross- AUC: 0.92 YCR-BCIP:IHC
validation (0.91-0.93)
YCR-BCIP-
RESECT (n=771)
AUC: 0.96
(0.93-0.98)
YCR-BCIP-Biopsy
(n=1531 pts) AUC:
0.78 (0.75-0.81)
YCR-BCIP- | Three-fold None YCR-BCIP-Biopsy
Biopsy Cross- AUC: 0.89 (0.88-
(n=1,531 pts) | validation 0.91)
Yamashita et MSinet Stanford Random None Stanford dataset Stanford dataset:
al, 20218° dataset (n=85 split (n=15 pts) IHC/PCR
pts) AUC: 0.93 TCGA:PCR
(0.77-1.00)
Four-fold TCGA Stanford dataset
Cross- (n=15 pts)
validation AUC: 0.93
(0.77-1.0)
TCGA
(n=479 pts)
AUC: 0.77
(0.72-0.83)
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Krause et al, ShuffleNet TCGA FFPE Random None TCGA FFPE PCR
20214 (n=256 split (n=142)
patients) AUC: 0.74
(0.68-0.85)
Lee et al, Inception-V3 | TCGA FFPE 10-fold None TCGA FFPE TCGA: PCR
20214 (n=470,825 Cross- AUC 0.89 SMH:PCR/IHC
patches); validation (0.85-0.92)
SMH FFPE SMH FFPE
(n=274 WSI) AUC: 0.97 (0.95-
0.98)
TCGA FFPE SMH FFPE TCGA FFPE
(n=470,825 AUC: 0.86
patches) (0.81-0.90)
SMH FFPE
AUC: 0.78
(0.74-0.83)
TCGA frozen None TCGA Frozen
(n=562,837 AUC: 0.94
patches) (0.92-0.95)
Cao et al, ResNet-18 TCGA- Random | Asian-CRC of TCGA-COAD PCR
202013 using the 15COAD split all stages from AUC: 0.88
EPLA model (n=429 Tongshu (0.81-0.95)
frozen) Biotechnology Asian-CRC
Co., Ltd. AUC: 0.64
FFPE (0.60-0.69)
TCGA-COAD Asian-CRC
frozen (90%) AUC: 0.85
and Asian- (0.75-0.93)
CRC FFPE
(10%)
TCGA-COAD Asian-CRC
frozen (30%) AUC: 0.92
and Asian- (0.88-0.97)
CRC FFPE
(70%)
Bilal et al, ResNet18 TCGA-CRC- Random TCGA-CRC- PAIP challenge PCR
2021° Adapted DX (n=499 split DX cohort
ResNet34 pts) (n=47 slides):
HoVer-Net AUC: 0.86
(0.04-0.74)
Jiang et al, MIL model | TCGA (n=441 | Three-fold PAIP AUC 0.88 +0.03 IHC
20223 WSI) Cross
validation
Echle et al, ResNet18 DACHS Leave- Yes AUC within-cohort PCR or IHC
202220 (n=2,039 pts). one- 0.91 (0.88-0.93)
All FFPE, cohort-out
only TCGA Cross- AUC deployment
had a small validation 0.89 (0.87 - 0.92)
number of
frozen
sections
QUASAR AUC within-cohort
(n=1,774 pts) 0.90 (0.88-0.92)
AUC deployment
0.93 (0.91-0.95)
TCGA AUC within-cohort
(n=426 pts) 0.79 (0.72-0.85)
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NLCS
(n=2,098 pts)

AUC deployment
0.91 (0.87-0.95)

AUC within-cohort
0.85 (0.82-0.87)
AUC deployment
0.92 (0.90-0.94)

YCR-BCIP AUC within-cohort
(n=805 pts) 0.93 (0.90-0.96)
AUC deployment
0.96 (0.94-0.98)
DUSSEL AUC within-cohort
(n=196 pts) 0.75 (0.64-0.85)
AUC deployment
0.85 (0.74-0.93)
MECC AUC within-cohort
(n=683 pts) 0.70 (0.64-0.75)
AUC deployment
0.74 (0.69- 0.80)
UMM (n=35 AUC within-cohort
pts) 0.98 (0.93-1.00)
AUC deployment
0.92 (0.69-1.00)
MUNICH AUC within-cohort
(n=287 pts) 0.80 (0.71-0.88)
AUC deployment
0.88 (0.80-0.95)
Ding et al, - TCGA-COAD NA TCGA-READ AUC 83.92 PCR or IHC
202210 (n=459 WSI CPTAC- (77.41-87.59)
images) COAD TCGA-COAD
AUC: 83.92
(77.41-87.59)
TCGA-READ
AUC: 61.28
(53.28-67.93)
Jiang et al, MIL TCGA 3-fold Yes AUC 0.88 IHC
2022% (n=441) Cross (0.85-0.92)
SYSUCC- validation AUC 0.84
surgical (0.82-0.86)
(n=355) AUC 0.76
SYSUCC- (0.73-0.80)
biopsy AUC 0.88
(n=341) (0.85-0.90)
PAIP (n=78)
Schirris et al, DeepSMile TCGA-CR Random NA 0.82 (0.77-0.86) PCR
20228 (n=360) split
Lou et al, PPsSNET Shandong Random NA 0.94 IHC
2022% Hospitals split
(n=144)
Guo et al Swin-T TCGA-CRC- Intra- Inter-cohort TCGA-CRC-DX IHC
2023% DX cohort external AUC 0.91+0.02
four-fold | validationand | (mean * SD) (23%
Cross- improvement over
validation recently published
AUC values on the
same dataset (0.86
from Bilal®) and
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0.74 from Kather et
al
MCO AUC: 0.90
(0.85-0.95)
Jiang et al, XGBoost Wuhan Union No 10-time cross XGBoost AUC: IHC
20234 (extreme Hospital validation 0.80
gradient (n=2,279
boosting, patients) -
SVM SVM AUC: 0.81
(support NB AUC: 0.74
vector
machine), RF AUC: 0.85
Naive Bayes -
(NB), LR AUC: 0.78
And RF
(random
forest and
logistic
regression.
Chang et al, WiseMSI TSMCC NA 10-fold cross 0.95 (0.94-0.96) PCR
20231 (n=1579) validation 0.63 (0.70-0.73)
TCGA
(n=609)
Saillart et al, MSintuit TCGA NA NA TCGA: 0.93 IHC
2023¢ (n=859) (0.90-0.96)
PAIP (n=47) PAIP: 0.97
MPATH (0.90-0.99)
(n=600) MPATH-DP200:
0.88 (0.84-0.91)
MPATH-UFS: 0.86
(0.83-0.90)

* AUC, Area Under the Curve; TCGA, The Cancer Genome Atlas study; CRC, Colorectal Cancer; NA: Not Available, WSI, Whole
Slide Images; pts, patients; FFPE, Formalin-Fixed Paraffin-Embedded; PAIP: Pathology Atrtificial Intelligence Platform. DACHS,
Darmkrebs: Chancen der Verhitung durch Screening (CRC prevention through screening study abbreviation in German); (Stanford
dataset, Stanford University Medical Center (USA) Gangnam sev, Gangham Severance Hospital (South Korea); MSIDETECT:A
consortium composed of TCGA, DACHS, the United Kingdom-based Quick and Simple and Reliable trial (QUASAR) and the
Netherlands Cohort Study (NLCS); YCR-BCIP:Yorkshire Cancer Research Bowel Center Improvement Programme; SMH, Saint
Mary’s Hospital (South Korea). TSMCC: TongShu MSI colorectalcancer; MPATH, medipath. PPSNET: depth refinement network.

MIL: multiple instance learning.

The same study trained a second model exclusively on the
TCGA dataset and when tested on the SMH dataset, it
demonstrated a reduced AUC of 0.78 and AUC of 0.86 on
the TCGA cohort. The superior performance of the first
model can be attributed to the inclusion of a portion of the
SMH dataset in the training phase which improved the ethnic
diversity. Overall, these results demonstrated that by
automatically removing artifacts and selecting tumor
patches with high tumor probability, the DL-based system
could screen out a considerable number of tissue slides for
their MSI status.

Selecting an appropriate methodological model for CNNs is
as crucial as the choice of training and validation cohorts
which can impact the performance and generalizability of
the model. Ensuring the dataset includes a comprehensive,
representative sample of the population is essential to avoid
biases and improve the model's generalization. Echle et al*!

https://doi.org/10.25303/2011rjbt4020416

addressed this challenge by developing a deep learning-
based classifier for determining dMMR/MSI status in two
studies. In the initial study performed in 2020, the group
trained ShuffleNet on a large dataset comprising 6,406 slides
from nine patient cohorts representing various countries and
ethnicities.

The model achieved remarkable clinical-grade performance
in predicting MSI status, evidenced by an AUC of 0.96 for
the external cohort and AUC of 0.92 for the internal cohort,
all accomplished without the use of any manual annotations.
In the second study performed in 2022, a ResNet18 neural
network model was trained on H and E stained slides
obtained from 8,343 patients with colorectal tumors across
different countries and of different ethnicities (Table 1). The
classifiers demonstrated a clinical-grade performance with
an AUC of 0.96 without the need for pre-processing,
suggesting potential utility for high-throughput, cost-
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effective evaluation of colorectal tissue specimens. During
the same time period, Bilal and colleagues® developed a
weakly supervised deep learning architecture incorporating
three distinct CNNs to predict MSI status, clinically relevant
mutations and molecular pathways.

The study employed ResNet34 and ResNet18 architectures.
The algorithms were trained using balanced datasets
comprising of tumor and non-tumor tiles. By utilizing the
same patient cohort and dividing the dataset into distinct
training and testing sets, the authors compared their MSI
prediction performance with that of Kather et al**. Their
iterative sampling method demonstrated superior
performance, achieving AUC of 0.90, as opposed to the
work published by Kather et al* which achieved an AUC of
0.77. Thus, the developed algorithm is considered as a
promising tool for the rapid prediction of clinically
significant mutations and molecular pathways, such as MSlI,
facilitating patient stratification for targeted therapies more
rapidly than traditional sequencing or IHC methods.

Another novel label-free approach using infrared imaging
and Al to classify MSI status in CRC was developed by
Gerwert et al?*. The novelty of the developed model was its
ability to classify MSI status based on unstained FFPE
sections, thereby leaving the specimen unmodified for
subsequent analyses. The study utilized Quantum Cascade
Laser Infrared (QCL-IR) microscopes and classified the data
using two CNN architectures. The first architecture, a
modified U-Net, was utilized to identify regions containing
cancer cells whereas the second architecture, VGG-Net, was
used to determine MSI status. The model exhibited a
promising performance with the validation AUC score
reaching 0.9 (Table 1).

In addition to CNN models and cohort factors, several
challenging technical issues must be addressed during the
development of new DL tools. For instance, processing
WSIs using CNNs presents significant challenges in terms
of memory and computational processing time. WSIs are
extremely high-resolution images, often exceeding
gigapixels in size, which demand substantial memory
capacity that can overwhelm standard computing
resources*>2, Additionally, the computational processing
time required to analyze such large-scale images through
CNNs is relatively long, leading to prolonged training and
prediction times that can hinder real-time diagnostic
applications.

To address these issues, Tong et al’® implemented a
downscaling methodology where a segmentation-based
technique was utilized to derive pixel-level image data
through computational analysis. This groundbreaking
whole-slide-level dAMMR/pMMR deep learning detector,
referred to as SPEED, significantly accelerated
computational processing, reducing it by a factor of 1,700
while maintaining exceptional performance. In an internal
validation set, it achieved an AUC of 0.989, surpassing the
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results of prior research in the field. These results indicate
that artificial intelligence designed for the assessment of
dMMR/MSI status presents a significantly faster and more
economical alternative to conventional molecular assays.
Consequently, the implementation of Al in this context
could enhance diagnostic efficiency and reduce associated
costs.

Limitations and prospects

Light microscopy remains the gold standard tool for
assessing tissue sections in pathology. However, this
technique faces several limitations including labor-intensive
processes and susceptibility to subjective interpretation. The
fact that numerous patients do not undergo MSI testing
despite clinical guidelines advocating for its universal
testing underscores the urgent need for the development and
adoption of new technologies™. The design of an effective
CNN architecture requires careful consideration of
numerous parameters, such as the number of convolution
layers, filter sizes and the complexity of the models
themselves.

Additionally, balancing the trade-offs between model
complexity and computational efficiency is crucial, as overly
complex models may lead to overfitting, while simplified
models might underperform and achieving the right balance
is essential for achieving robust and accurate CNNs3161.62,

A common limitation among the reviewed articles was the
bias in patient selection where studies used a single cohort
(e.g. TCGA) without incorporating additional cohorts. This
limitation restricts the diversity of the study population and
consequently affects its generalizability*65°. The ability to
have diverse multi-national cohorts is essential for
developing generalizable models that reflect differences
between diverse ethnicities. For instance, a model trained
with TCGA data exhibited poor performance when applied
to a Japanese cohort*. Similarly, Cao et al** demonstrated
low model performance when a model was trained on a
TCGA cohort or tested on an Asian cohort; however,
incorporating an Asian cohort into the training set

significantly improved the model’s performance®.

Additionally, securing an independent external validation set
is essential in model evaluation®® to clearly differentiate
between training and validation groups. Thus, according to
these observations, it has been hypothesized that
morphological variances in colon cancer between Caucasian
and Asian patients exist and may hinder the generalizability
of deep learning systems.

Based on the data published by Pressman et al, the
performance of the model on the Gangnam test dataset was
observed to be within one standard deviation of its
performance on the TCGA test dataset, where the model was
trained exclusively on the TCGA data, which included a
limited number of Asian patients®.
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The broad applicability of Al-based classifiers remains a
significant concern for the applicability of DL models in the
clinical setting. Jang et al*** and others*®4° found that
classifiers designed to differentiate various molecular
characteristics from tissue images using TCGA datasets
exhibited suboptimal performance when applied to Korean
datasets.

An effective Al-based analysis for WSI also relies on several
factors including the type of sample (frozen or FFPE), the
staining quality and the scanning technology employed.
Thus, the limited generalizability of these models can be
attributed, in part, to different sample preservation and
preparation methods. For instance, frozen slides exhibit a
distinct morphology compared to FFPE slides due to the
freezing process®.

In comparing their classification performance, patch-level
results were robust only when classifiers were trained
exclusively on one tissue type. Conversely, when classifiers
were trained on two tissue types (i.e. frozen and FFPE
tissues), the performance for each tissue modality was
suboptimal.

Thus, the technique employed in sample collection and
preparation can adversely impact the model performance®.
This observation is supported by Jang et al**% findings
where model performance was reported to vary among the
investigated biomarker genes where higher AUCs were
achieved for APC and KRAS using frozen WSIs over FFPE
WSiIs, indicating that frozen WSIs may be more
advantageous for molecular testing, despite FFPE methods
excelling in cellular morphology preservation. In addition to
the type of sample, discrepancies were noted among the
studies concerning the techniques used to determine
dMMR/MSI status in the original patient samples, with some
studies employing PCR and others using IHC.

Considering such differences is important as each test
provides different information about the tumor samples.
Specifically, IHC provides information about the MMR
proteins expressed in the sample, whereas MSI by PCR
measures MMR function by detecting changes in DNA that
result when major MMR function is lost. Consequently,
these differences can have a significant impact on the model
validation®?,

Finally, due to memory limitations, even server-grade
graphics processing units (GPUs) are incapable of
processing high-resolution WSIs. Consequently, the
majority of deep learning models have been developed using
classification-based approaches, whereby small patches are
extracted from WSIs for training purposes rather than
utilizing the full-size WSIs®t, This necessitates the
segmentation of a WSI into thousands of smaller patches
which compromise the continuity of the image and result in
a significant increase in computational data®. These issues
can be partially solved by using modern WSI scanners
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designed with an autofocus optics system that choose focal
planes to precisely capture the three-dimensional structure
of tissue as a two-dimensional digital image®°.

Nevertheless, these scanners might generate digital images
with out-of-focus or blurry sections if the AF optics system
incorrectly selects focus points at an improper plane relative
to the tissue's actual height. Additionally, color
normalization can pose challenges. The high cost of
infrastructure, such as rapid scanners and large storage
spaces, poses a significant challenge®. Therefore,
standardizing scanner systems, image processing models
and virtual microscopy interfaces, is vital for advancing
image analysis methods in pathology.

Conclusion

Light microscopy remains the gold standard in pathology,
but there is an increasing demand for image analysis tools
capable of performing complex analyses with high precision
and reproducibility. The cost of infrastructure including
rapid scanners, large storage spaces and integration into
medical information systems, presents a barrier. Hence,
advancing image analysis methods are becoming
increasingly crucial for pathologists, driving the need for
sophisticated tools to meet these demands. Al-based
predictive analytics allowed scientists to analyze complex
data sets from genomics, proteomics and entire pathology
slides, resulting in a more thorough characterization of
patients and improved precision in prognosis. These
advancements promise to streamline pathological
workflows.

In addition, the employment of Al technology can reduce
variability due to subjective assessments, making pathology
more consistent. Although Al has not yet replaced traditional
diagnostic tools, it shows significant potential in predicting
MSI status based on morphological features. This
technology also tackles challenges like high costs, labor
intensity and subjective interpretation. Given that many
patients miss out on testing despite clinical
recommendations for universal MSI testing, the study
highlights the need for new technologies.
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